BPSC11 : Civil Engg.-I

BPSC-AE Mains Test Series

ENGINEERS ACADEMY

ANSWERS AND EXPLANATIONS

1.	Ans. (c)	20.	Ans. (d)
	For 2D-rigid frame		3000 300
	3m + r - 3j = 0		$e_{\min} = \frac{3000}{500} + \frac{300}{30} = 16 \text{ mm}$
	$3\mathbf{m} + \mathbf{r} = 3\mathbf{j}$		or $e_{\min} = 20 \text{ mm}$
	To be stable and determinate.	21.	Ans. (a)
2.	Ans. (a)		Specific gravity
3.	Ans. (a)		G = 2.70
4.	Ans. (a)		$G_{m} = 1.84$
5.	Ans. (a)		For dry soil $\rho_{\rm d} = \frac{G\rho_{\rm w}}{1+e}$
6.	Ans. (b)		For any solution $p_d = \frac{1+e}{1+e}$
7.	Ans. (a)		$\rightarrow \underline{\rho_d} = G$
8.	Ans. (b)		$\Rightarrow \qquad \frac{\rho_{\rm d}}{\rho_{\rm w}} = \frac{G}{1+e}$
	Torsional stiffness = $\frac{GI_P}{L}$		\Rightarrow $(G_m)_{dry} = \frac{G}{1+e}$
9.	Ans. (a)		\Rightarrow $(G_m)_{dry} = \frac{1+e}{1+e}$
	Due to twisting crystalline structure becomes		\Rightarrow 1.84 = $\frac{2.70}{1+e}$
	more-dense.		\Rightarrow 1.84 = $\frac{1}{1+e}$
10.	Ans. (c)		\Rightarrow e = 0.47
	It gives bending/flexural tensile strength	22.	Ans. (c)
	$= 0.7\sqrt{f_{ck}}$		For plastic limit \rightarrow 15 gm, 425 μ and for shrinkage
			limit \rightarrow 30 gm, 425 μ .
11.	Ans. (b)	23.	Ans. (b)
	It's $0.03\% = \frac{0.03}{100} = 3 \times 10^{-4}$	24.	Ans. (b)
12.	Ans. (b)		It is more suitable for cohesionless soil, where
13.	Ans. (c)	2	entrapped soil can be removed easily.
101	It depends on grade of steel only.	25.	Ans. (c)
14	Ans. (b)	26.	Ans. (a)
14.	As per IS : 456 - 2000		Primary consolidation is the volume change of
15.			soil due to squeezing out of water from soil due to constantly application of load.
15.	IS : $13920 \rightarrow$ For earthquake resistant	27.	Ans. (b)
	construction		Maximum permissible shear-stress=45N/mm ²
	IS : 1893 \rightarrow To calculate earthquake forces.		Average shear-stress = 40 N/mm^2
16.	Ans. (d)	28.	Ans. (c)
17.	Ans. (c)		n = 1/3
	For 90° bend anchorage value is 8 ϕ .		n 1/3 1
18.	Ans. (a)		$e = \frac{n}{1-n} = \frac{1/3}{1-1/3} = \frac{1}{2} = 0.5$
	For deformed bars, it is 0.12%.		G = 2.5
19.	Ans. (d)		$i_{c} = \frac{G-1}{1+e} = \frac{2.5-1}{1+0.5} = 1$
•	(**)		$l_c = \frac{1}{1+e} = \frac{1}{1+0.5} = 1$

info@engineersacademy.org 🔨 +91 809 444 1 777 📎 www.engineersacademy.org

6

29.	Ans. (c)	38.	Series ENGINEERS ACADEMY
30.	Ans. (a)		U-line is $I_{\rm p} = 0.9(w_{\rm r} - 8)$
	Phreatic line is upper zone of saturation in		A-line is $I_{p} = 0.73(w_{L} - 20)$
	earthen dams. It has atmospheric pressure (zero gauge - pressure) on it and it is a parabolic	39.	Ans. (d) P
		40.	Ans. (a)
	line.		For rectangular section,
31.	Ans. (b)		7
	Sheep foot rollers are recommended for compacting cohesive soil.		Shape-Factor = $\frac{Z_p}{Z_e}$
2.	Ans. (a)		$BD^{2}/4$ 3
-	Dilatancy of soil shows the reaction to shaking.		$= \frac{\mathrm{BD}^2/4}{\mathrm{BD}^2/6} = \frac{3}{2} = 1.5$
3.	Ans. (a)	41.	Ans. (d)
	Heavy clay has least permeability. So, it has	42.	Ans. (a)
4.	high OMC and less dry density. Ans. (a)		For yielding \rightarrow Gross section
7.	Meniscus correction = $+ve$		For Rupture \rightarrow Net section
	Temperature correction = $\pm ve$	43.	Ans. (b)
	Dispersing agent correction = -ve		It is taken as 0.7 - 1.0 times.
	Net $C = +C_m - C_D \pm C_T$	44.	Ans. (a)
5.	Ans. (a)	45.	Ans. (c)
6.	Ans. (c)		In this case 30° slope is the best possible solution
	• Wet clay \rightarrow Grid Roller		to minimize the wind force.
	• Crushed Rock \rightarrow Smooth wheel Roller	46.	Ans. (b)
	• Fill Soil \rightarrow Pneumatic tyred roller	47.	Ans. (c)
	• Sand \rightarrow Vibrator	48.	Ans. (a)
7.	Ans. (b)		As per IS : 800 - 2007
	Assumptions of boussinesq theory	49 .	Ans. (b)
	Homogeneous and isotropic	50.	Ans. (c)
	Hook's law valid		
	• Self weight neglected		ACADEMY
	• Change in volume is neglected		
	• Distribution of stresses along the vertical stresses is symmetrical		